Global solutions of nonlinear wave-Klein-Gordon system in two spatial dimensions: A prototype of strong coupling case
نویسندگان
چکیده
In this article we will develop some techniques aimed at the strong couplings in two-dimensional wave-Klein-Gordon system. We distinguish roles of different type decay factors and a method which permits us to “exchange” one into other. Then global existence result model problem is established. also give sketch Klein-Gordon-Zakharov system establish associate result.
منابع مشابه
Global solutions for the Dirac-Klein-Gordon system in two space dimensions
The Cauchy problem for the classical Dirac-Klein-Gordon system in two space dimensions is globally well-posed for L Schrödinger data and wave data in H 1 2 ×H − 1 2 . In the case of smooth data there exists a global smooth (classical) solution. The proof uses function spaces of Bourgain type based on Besov spaces – previously applied by Colliander, Kenig and Staffilani for generalized Benjamin-...
متن کاملGlobal Existence for Coupled Systems of Nonlinear Wave and Klein-Gordon Equations in Three Space Dimensions
We consider the Cauchy problem for coupled systems of wave and Klein-Gordon equations with quadratic nonlinearity in three space dimensions. We show global existence of small amplitude solutions under certain condition including the null condition on self-interactions between wave equations. Our condition is much weaker than the strong null condition introduced by Georgiev for this kind of coup...
متن کاملStrong instability of standing waves for nonlinear Klein-Gordon equation and Klein-Gordon-Zakharov system
The orbital instability of ground state standing waves eφω(x) for the nonlinear Klein-Gordon equation has been known in the domain of all frequencies ω for the supercritical case and for frequencies strictly less than a critical frequency ωc in the subcritical case. We prove the strong instability of ground state standing waves for the entire domain above. For the case when the frequency is equ...
متن کاملSoliton-like Solutions of the Complex Non-linear Klein-Gordon Systems in 1 + 1 Dimensions
In this paper, we present soliton-like solutions of the non-linear complex Klein-Gordon systems in 1+1 dimensions. We will use polar representation to introduce three different soliton-like solutions including, complex kinks (anti-kinks), radiative profiles, and localized wave-packets. Complex kinks (anti-kinks) are topological objects with zero electrical charges. Radiative profiles are object...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2021
ISSN: ['1090-2732', '0022-0396']
DOI: https://doi.org/10.1016/j.jde.2021.03.047